B Crpss- Platform
»*/Performa nce
.aﬁngmeerlng with

AIImea Studlcy

John C. Linford
28 May 2019

Outline

Slides [http://bit.ly/arm-alcf-may19]

e Performance Engineering Concepts
* Arm Forge (DDT and MAP)

* Arm Performance Reports

* Arm Compilers and Libraries

* Real World Case Studies

* Hands on kickoff

2 © 2019 Arm Limited

Hands-on

AWS Graviton cluster available for 24hrs!
Pick a student number 1 ... 20
Replace XX with your student number

ssh student@XX@108.128.237.67
« Password: Tr@ining@XxX

Grab a compute node (8 cores per node):

-srun -n 8 ——pty $SHELL

Remember to zero-pad your student number to
three places, e.g. “3” becomes “003”

We strongly recommend you download and
install the Arm Forge Remote Client.

arm

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge

OpenFOAM and ParaView across the Arm ecosystem

Cross-platform ecosystem and standards make this possible

Hewlett Packard Ope nVFOAM
Enterprise — !” ParaView

A

o= Windows10

3 © 2019 Arm Limited

Identifying and resolving performance issues

Identify Hotspots Focus Optimization

Refine the

4 © 2019 Arm Limited q r m

Arm’s solution for HPC application development and porting

Commercial tools for aarch64, x86_64, ppc64 and accelerators

Cross-platform Tools Arm Architecture Tools

arm arm arm
FORGE C/C++ & FORTRAN ALLINEA STUDIO

LDDTJ LMAPJ + COMPILER = : C/C++ Compiler

Fortran Compiler

4 0 A % Performance Libraries

CI rm a rm % Forge (DDT and MAP)

PERFORMANCE PERLTER%GZICE % performance Reports
REPORTS

.

5 © 2019 Arm Limited a r m

Use the Arm Forge Remote Client

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge

Remote client \
(remote launch + reverse
connect)

|~ On the head node
/ (interactive mode + reverse connect)

I > L__; | _—— On the compute node

= NE— \==—1 | (offline OR interacti de)
=1 & G= offline OR interactive mode
=] s =] H == 5

Compute Node\ Compute Node Computf Node

\ /

Ultimately, that’s where the tools will run.

6 © 2019 Arm Limited a r m

Arm Forge somewhere over the Pacific at 41,000ft and 550MPH

&) PING © DOWNLOAD (*) UPLOAD SHARE

759 04 034 ©eos

Mbps Mbps Result ID 7229830690

Hibernia Networks / @ Telstra

~—

* % % Change Server

7 © 2019 Arm Limited q r m

Launching the Arm Forge Remote Client

The remote client is a stand-alone application that runs on your local system

Install the Arm Remote Client (Linux, macOS, Windows)

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Connect to the cluster with the remote client
« Open Forge Remote Client

- Create a new connection: Remote Launch =» Configure = Add
— Hostname: <username>@<hostname>

- Remote installation directory: </path/to/arm-forge/X.Y/>
« Connect!

8 © 2019 Arm Limited a r m

https://developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge

Remote connect

arm
FORGE

arm
DDT

arm
MAP

9 © 2019 Arm Limited

RUN

e [©©_ Configure Remote Comections

ATTACH
Attach to an already running program.

mars-rhel7

OPEN CORE
Open a core file from a previous run.

MANUAL LAUNCH (ADVANCED) Connection Name: I oxp09-nnm08@login.ace.hartree.stfc.ac.uk oxp09-nnm08@ace-login

M lly launch the backend If. p -
anually faunch the backend yourse Host Name: Ioxp09-nnm08@log|n.ace.hartree.stfc.ac.uk oxp09-nnm08@ace-login

OPTIONS How do | connect via a gateway (multi-hop)?

Remote Installation Directory: | Jopt/ohpc/pubjutils/arm-forge/18.1.2/

Remote Launch:

configure... 2 Remote Script | Optional

Always look for source files locally
QuIiT

Test Remote Launch

[ox [cancel |

x Test Remote Launch

Remote Launch test completed successfully.

Hostname: ace-login
0S: CentOS Linux release 7.4.1708 (AltArch)
Version: 18.1.2

Show Terminal >>

arm

Arm Forge = DDT + MAP

An interoperable toolkit for debugging and profiling

Ig':"\

Commercially supported
by Arm

1

N N |
Fully Scalable

° [)
Very user-friendly

10 © 2019 Arm Limited

The de-facto standard for HPC development

- Available on the vast majority of the Top500 machines in the world
« Fully supported by Arm on x86, IBM Power, Nvidia GPUs, etc.

State-of-the art debugging and profiling capabilities
- Powerful and in-depth error detection mechanisms (including memory

debugging)
- Sampling-based profiler to identify and understand bottlenecks

- Available at any scale (from serial to petaflopic applications)

Easy to use by everyone

- Unique capabilities to simplify remote interactive sessions
- Innovative approach to present quintessential information to users

arm

DDT: Production-scale debugging

Isolate and investigate faults at scale

* Which MPI rank misbehaved?
- Merge stacks from processes and threads
- Sparklines comparing data across processes

* What source locations are related to the problem?

- Integrated source code editor
- Dynamic data structure visualization

Text Communicator Queue Pointer From (local) _From (global) o (local) o (global)

* How did it happen?

« Parse diagnostic messages Locals Currentline(s) | Current Stack |
- Trace variables through execution a]|curment tine = x
Variable Name l Value I
* Why did it happen? el B - I
. " . . . L mype [, 2724 B
 Unique “Smart Highlighting .
- Experiment with variable values ISUT20 TS pOp PO IS
150120 —initialize_pop (initial f20:119)
150120 Zinit_communicate (communicate f90:87)
150119] §~~crea1e_ocn_cnmmuni1br (communicate f90:300)

11 © 2019 Arm Limited

DDT: Feature Highlights

File Edt View Control Tools Window Help

Switch between = *-f 1 ia-o-

mnmmlnl -| Focus on current: © Group ¢ Process ([Thread||I™ Step Trreads Together |

MPI ranks and (IR
00000000

OpenMP threads s e i | cosommmoc o |

[Search (ctrivk) &g

Visualise data

Hle. View G155 ication Code p structures
> i S
W Headers r * Hoxt + Hnl
“Current Grouj = = ; ?"”c':lis(k(rs - 5, 3, ivar,
u . PR

Create Group

‘ijxlﬁlﬁ @ | @ MpiEni cc % | = LatticeData.cc % | € xyzpart.c X
[SEmh (Ctrl+K) l.\ 546 if (allpicks[i].val != -1) . .
547 allpicks[ntsamples++] = allpicks[il;
@ template.cc - 548 }
@ template_annotator.cc 549
B template cache.cc 550 /* sort all the picks */
[Femory Leak Report s, allpicks); Me L
118 ronks gend 2l splitters. Set th o
Rank 0: 58311 kB W o (a3 c139) i++)

Rank 1: 5871 K
Rank 2: 5871 K
Rank 3: 5871 kb B

1picks[i*ntsamples/nf
10X _MIN; \

= IDX MAX;

Rank & 58.71 ks I I W

Renk 5. 3871 k6 I I

Rank 6 3871 ke W I I - i

Ronk 7. 5871 45 1 1l I ot ipicks = RO Pt «aﬁu:‘mﬁwb
@ Vector3DHemelb.cc 563 STOPTIMER(ctrl, ctrl->AuxTmr2); S <value optimized out> I
[VelocityField.cc 564 STARTTIMER(ctrl, ctrl->AuxTmr3); i | w—o22d [

onhnect to @ Viewpaint.cc 365 5o fH | e | osmonmanns | -
il I D) 566 /* Compute the number of elements tha

® Show global ranks.

continuous [inputioutput | Breakpoints | Watchpoints | Stacks | Tacepaints | Tracepoint Output | Logbook ‘ o -

Stacks

e | Select communicator
. . Processes Threads Function -
Integration 17220117220 1= main (main.cc:37) o
17220117220 & c:63) MPI_COMM_SELF
17220 11722001 = i i c:154) Wi
17220172201 y::Geomets (Geometr ceil
17220 []17220] y::Geomet i Y

17220 J172200] i 256 —
17220 J172200] lIParmetis (O —_Shml Diagram Key
17330170

17220 117220 |
1
Text [i Queve Pointer From (local) _From (global) To(loca) | To(global)

rmen, PseudoSampleSort

1 |Receive: 0x8... MPI COMMUN. 00 129 105 13 369
2 Receive: 0x... MPI COMMU 00 16 272 103 29

D i S |a en d i n 3 | Receive: OxB... | MPI COMMUN... Receive 0x0 m m m s
p y p g 4| Receive: 0x... MPI COMMUN... Receive 00 174 430 252 s08

communications = : :

12 © 2019 Arm Limited a r m

Multi-dimensional Array Viewer

What does your data look like at runtime?

* View arrays
« On a single process
« Or distributed on many ranks

* Use metavariables to browse the array
- Example: Siand §j
- Metavariables are unrelated to the variables in
your program.
« The bounds to view can be specified
« Visualise draws a 3D representation of the

array

e Data can also be filtered
« “Only show if”: Svalue > 0 for example Svalue
being a specific element of the array

13 © 2019 Arm Limited

Multi-Dimensional Array Viewer x
Array Expression: [tahles[sil[sjl LJ Evaluate I
Distributed Array Dimensions: How do | view distributed arrays? Cancel
Staggered Array What does this de? +/| Align Stack Frames
Range of $i Range of §j | Auto-update
fom [0 8 mem [0 3
o (11 B = [n 5]
Display: |Rows 4| Display [Coumns %]

[Only show if: [See Examples
Data Table | Statistics |
4 Export - Full Window

< Goto | visualize

J

0 1 2 3 4 5 6 7

s| e 7] g

9 10 11
o 10 11| 13|

10| 12| 14] 16| 18| 20| 22| 24

SN

arm

Memory debugging menu in Arm DDT

Run: mpirun -n 8 ./mmult2_c.exe Details

Command: mpirun -n 8 ./mmult2_c.exe

OpenMP
¥ CUDA: Track allocations: enabled, Detect invalid accesses: disabled Details

¥/Track GPU allocations (also enables CPU memory debugging)

Detect invalid accesses (memcheck) When manual Iinking is used’

v Memory Debugging: Fast, 1 guard page after, Backtraces, Preload Details...
H o V24
untick “Preload” box

Plugins: none Details

Hel Opti Ri

‘i[m‘ E g ¥/ Preload the memory debugging library fLanguage: \C++, threads v]
Note: Preloading only works for programs linked against shared libraries. If
your program is statically linked, you must relink it against the dmalloc
library manually.
Heap Debugging

Fast Balanced Thorough Custom
= ”)
Enabled Checks: \basic More Information

\ Heap Overflow/Underflow Detection
¥/Add guard pages to detect out of bounds heap access
Guard pages: Agd guard pages: m
Advanced
Check heap consistency every :E] heap operations
¥ Store stack backtraces for memory allocations

Only enable for these processes:

[100% | Select All |[x2 || x0.5 |[1%

| Help Cancel

14 © 2019 Arm Limited

arm

Arm DDT Feature Details

* Scalable debugging of threaded codes (with OpenMP or pthreads)

- Support for asynchronous thread control
* Memory debugging: error detection, OOB detection (guard pages), leak detection

* Single or multiple Linux corefiles.

- Core files are well supported on aarch64,
- Can selectively dump core memory from specified processes or threads.
- Standard core files as generated by all major Linux distributions. Lightweight core files not supported.

e Scalable launch via many vendor specific launch infrastructures, e.g. PMIx or MPIR

15 © 2019 Arm Limited q r m

Application Debug Information

DWARF 4 is fully supported on aarch64.

- Arm and partners regularly verify debug information against GDB and Arm regression test suites.
* The GCC and Arm compilers produce debug information for applications that are
compiled with at least the “-O -g” code optimization.

e Addition of architecture-specific flags like -march, -mcpu etc. further optimize the
produced binaries to take full advantage of distinguishing features of the ThunderX2
CPU without interfering with debugging.

* The debugging information supports source context including program variables and
stack traces. The runtime libraries of C/C++ and Fortran also retain key debugging
information such as stack frame information.

16 © 2019 Arm Limited q r m

Arm DDT cheat sheet

Start DDT interactively, remotely, or from a batch script.

Load the environment module:
S module load forge

Prepare the code:
S mpicc -00 -g myapp.c -0 myapp.exe
S mpfort -00 -g myapp.f -o myapp.exe

Start DDT in interactive mode:
S ddt mpirun -n 8 ./myapp.exe argl arg2 ...

e Or use reverse connect:
On the login node:
Sddt &
(or use the remote client)
Then, edit the job script to run the following command and submit:
ddt --connect mpirun -n 8 ./myapp.exe argl arg2 ...

17 © 2019 Arm Limited a r m

Run DDT in offline mode

Run the application under DDT and halt or report when a failure occurs.

* You can run the debugger in non-interactive mode

« For long-running jobs
- For automated testing, continuous integration...

* To do so, use the following arguments:
S ddt --offline --output=report.html mpirun ./jacobi_omp_mpi_gnu.exe

--offline enable non-interactive debugging
--output specifies the name and output of the non-interactive debugging session
Html
« Txt
Add --mem-debug to enable memory debugging and memory leak detection

ddt --offline -0 jacobi_omp _mpi_gnu_debug.txt \
--trace-at _jacobi.F90:83,residual \

srun ./jacobi_omp mpi_ gnu.exe

18 © 2019 Arm Limited

arm

DDT command line options

$ ddt —help
Arm Forge 18.2.1 — Arm DDT

Usage: ddt [OPTION...] [PROGRAM [PROGRAM_ARGS]]
ddt [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]

——connect Reverse Connect (launch as a server and wait)
——attach=[hostl:]1pidl, [host2:]pid2... [PROGRAM] attach to PROGRAM being run by list of host:pid
—attach-mpi=MPI_PID [--subset=rankl,rank2,rank3,...] [PROGRAM] attach to processes in an MPI program.
——break-at=LOCATION[,START:EVERY:STOP] [if CONDITION] set a breakpoint at LOCATION
—trace-at=LOCATION[,START:EVERY:STOP],VAR1,VAR2, ... set a tracepoint at LOCATION

——cuda enable CUDA

——mem—-debug [=(fast |balanced|thorough|off)] configure memory debugging (defaults to fast)
——mpiargs=ARGUMENTS command line arguments to pass to mpirun

-n, ——np, ——processes=NUMPROCS specify the number of MPI processes
——nodes=NUMNODES configure the number of nodes for MPI jobs
——procs—per—-node=PR0OCS configure the number of processes per node
——offline run through program without user interaction
-s, —silent don't write unnecessary output to the command line

19 © 2019 Arm Limited a r m

Arm MAP: Production-scale application profiling
Identify bottlenecks and rewrite code for better performance

Examples:
$> map -profile mpirun -n 48 ./example

Run with the representative workload you started with
Measure all performance aspects with Arm Forge Professional

Profiled: My_code.exe on 64 processes Started: Fri Sep 20 14:59:09 2013 Runtime: 355 Time in MPI: 45% Hide Metrics...
Memory usage (M)
94 - 7779 (4546avg) -~
MPI call duration (ms)
0 - 55751 (34L0avg) é é
CPU floating-point (%) P N "y TRy
) (82avg) N P - B T T = =

14:59:09.

9:44 (range 34.773s): Mean Memory usage 454.6 M; Mean MPI call duration 341.0 ms; Mean CPU floating-point 8.2 %; Metrics| Reset

T My coderso @ |

Profiled: clover_leaf 4nodes, 32 cores (1 per process) Sampled from: Wed Nov 9 2016 15:28:37 (UTC) for 309.1s Hide Metrics 87 ! -~
88 « module wall_excitation (__..n)
Application activity 00 |
_ s : PORULE ExCHTATION
102 !
Nerations/s ™ 103 + module derivative (e)
o 140 g
141 ! MAIN CODE
arind Be Lo L 142 Lo et et et e e e e s e e e e e e e e e e e ee e e s e nens
143 -[_progrom vel Vort 30 _FP
oc0s 144 use data_mc
145 use wall_excitation
Stop time . 146 implicit none
i sk . o] Ll 147 include ‘mpif.h'
o N - - — ~ — e - i 148 double precision :: max_omx_dt,max_omy_dt, max_omz_dt,t,time_cal
15:28:37-15:33:46 (309.138s): Main thread compute 0.2 %, OpenMP 0.0 %, MPI 19.7 %, OpenMP overhead 0.1 %, Sleeping 0.1 % Zoom &1 = 149 integer :: option,1,]j,k,nn, fwent, count_max, counter, 10s,next_file_at,w_cnt(1:4)
150 charactert30 :: str,file_type, str_t,num_2_str
T hydro 190 X | Time spent on line 75 151
3.2% 7 ALL flux_calc() i Nnkdwnc'mﬁ.z%;k;ow\ on this line: o }_zg E:H :{:::!:S;Irsr:WI_com_mw.nprv. ierr)
e 75 adestionl L Caling other functions 100 0 4 |
3.3 7 ALL reset_field() :J Input/Output | Project Files Paraliel Stack View

InputOutput | Project Files OpenMP Stacks | OpenMP Regions | Functions |
OpenMP Stacks @)
Total core ime ~ MPI Overhead Function(s) on ine =

=7 clover_leal

o
advection_module-advection

20 © 2019 Arm Limited

Parallel Stack View & x

Total Time Function(s) on line

31.4% = time_integration call tise_integration My_code.190:330
16.9% il 5.3% “mod_rank read file... call sod_rank read_file_all_its_own(str,nn,ios) ! Restart fros last checkpoint My_code.90:297
12.8% Wl 63% = vekcity_solver call velocity_solver My_code.f90:337
18% # <unknown> <nknown> (nadebug info)
1.5%) 1.4% * vel_vort_3d fp_ call cell _identifier My_code.r90:190

91 others

Arm MAP Overview

A lightweight sampling-based profiler for large scale jobs

Core Features

* MAP is a sampling based scalable profiler
- Built on same framework as DDT
- Parallel support for MPI, OpenMP
- Designed for C/C++/Fortran
* Designed for simple ‘hot-spot’ analysis
- Stack traces
- Augmented with performance metrics

* Lossy sampler
- Throws data away — 1,000 samples / process
- Low overhead, scalable and small file size

21 © 2019 Arm Limited

Performance Metrics

* Time classification
- Based on call stacks
« MPI, OpenMP, 1/0, Synchronization

* Feature-specific metrics
« MPI call and message rates
- (P2P and collective bandwidth)
- I/0O data rates (POSIX or Lustre)
 Energy data (IPMI or RAPL for Intel)

* Instruction information (hardware counters)
« x86 — instruction breakdown + PAPI
« aarch64 — perf metric for hardware counters

arm

Hardware Performance Metrics on Arm

MAP uses perf or PAPI to gather data. Cycles per instruction D0 i i

0.83

CPU Cycles 55.3 B —

* On x86 MAP reports on instruction mix 150
« CPU, vectorization, memory, etc 17

Instructions
- Arm are researching ways to provide the same 61.5G /s

L2 Cache Accesses
379 M /s

* Instruction activity via perf o —

L2 Cache Misses

- Harder to read / action 125 M s

° R aw ra te S p resen t e d -nNn Ot i n t er p lo) | a t e d Mispredicted branch instructions T _'-'-"'-__‘""'"‘""‘-'A"A_‘-""""-"-'-'-""-‘.._-'-"“"-"'-‘"-"-'-fv'-'f'—
50.2 M /s

Stalled backend cycles HuL

* Welcome your feedback to improve this 35.1%

Stalled frontend cycles drL
8.3 %

Stalled cycles HEL
43.4 %

Non-stalled cycles
56.6 %

22 © 2019 Arm Limited a r m

Python Profiling

From 19.1

15:28:58-15:29:34 (35.500s): Main thread compute 83.9 %, File 1/O 4.0 %, Python interpreter 12.1 %

‘ # diffusion-f-2d.py X

New support for

42
.4% IIIIIIIIIIIIIIII!IIIIIIIIII HALTTN 23
1% 4

Python applications ' -

60. 9% GGG <c
.38 [[[| [Il]r4s
5

o -
mm

2:]) * (dy/dx)
T:-1]) * (dv/dx)) 7 (dy*ax))

1 [.
- unfi:-1,

',' np.sum(uf1:-1,1:-1]), np.max(uf1:-1,1:-1]) - np.min(ufl:-1,1:-1]))

5
277 % -

* Native Python S

Lf draw == 0:
63 tmp = un
64 un = u
65 u = tmp
=1
cylinder_init(u, nx, ny, h): C—I)

cube_init (u, nx, ny, h):

om m

w
o
23]

e Cython Interpreter -

0.5% | | | 79

=
0B 8 &

* Called C/C++ code R e

[Input/Output | Project Files = Main Thread Stacks | Functions |
Main Thread Stacks
Total core time A Self Child Function(s) on line Source

= & python [program]
¢ diffusion-fv-2d.py #!/usr/bin/env python

60.9% <unknown> from multiarray.so, [PYTH -1, infl:-1,1:-1 iy /dx)) iy *dx))

27.9% |IIINAIN [27.9% # sum, amax, amin, [PYTHON_IO_ WRITE... print("sum(u): ", np.sum(uf[l:-1,1:-1]), np.max{u[l:-1,1:-1]) -
7.4% |ININNT | O0mOne Wue i 7.4% # amax, amin while np.max(u) - np.min(u) > 0.01:
1.8%]| 1.8% # <module>, [PYTHON_IO_READ] import matplotlib.pyplot as plt

. 1.3% 1.3% @ solid_boundary, [PYTHON], PyEval Eva... solid_boundary
23 © 2019 Arm Limited o,7°,1,|I . ||| — ‘\I I\ 0.7% ;Aotﬁers - PrEE T a rm

Custom metrics interface

* MAP supports the development of user metrics

* We provide a custom metric interface
 API for safe calls to common functions

* Let’s you develop your own metrics of interest

- Link to application metrics (units /s, error values)
- Link to libraries (specialist communication or 1/0)
- System metrics (custom energy monitors)

* Integrates directly into MAP and Performance Reports
« XML files for aggregation methods

* Need to consider overheads and thread safety

24 © 2019 Arm Limited

arm

Custom metric example: MUSCLE2 & LU error terms
https://github.com/arm-hpc/custom-metrics

Profiled: chease kernelB on 1 process, 1 node Sampled from: Wed Feb 22 2017 15:26:15 (UTC+01) for 4,719.9s Hide Metrics...

e N R e
ISSEEE—————————— 1 instrumentation, e.g. NPB LU

System power usage 376 [- T R = e o et e T e e e et i i
360 W/node A
0
MUSCLE2 sentbytes 4 — * Record error terms of solve
0.09 MB/s - . [. S . o
0 .
MUSCLE2 receive rate | L _ S = ') . ® Plot over tlme and Step COunt fOr
0.10 MB/s . : T : o
ol)) . . o . . .
MUSCLE?2 receive duration 2*° ~ (0] ptl misa t on
47.8s . //" //4-/,'- /:/// // //,-’-’/-///////,/, //:/"_/".’,/:l//'_-,/_-/,/_r/_,” /';_,.’.’/:///-’/"'__/' /{ /."‘/_:/,‘./,// ,/ /////////;_ ,.";__t/ /_. /»/;‘__‘://!_ ,r;//- Y
14:26:15-15:44:54 (4,719.866s): Main thread compute 99.1 %, File 1/0 0.9 % Zoom @‘\; Ei (O
i _
LU Step Count 2=y
124
0
Array 1 Error 230y T,
0.65 k &
ol
Array 2 Error 2 -
45.4 T
ol
Array 3 Error B2y -.
157 &
ol
Array 4 Error 200 e
133
ol
Array 5 Error 6a1 [T
132k
ol

25 © 2019 Arm Limited a r m

Arm MAP cheat sheet

Generate profiles and view offline

Load the environment module
S module load forge

Prepare the code
S mpicc -0 -g myapp.c -0 myapp.exe
S mpfort -0 -g myapp.f -o myapp.exe

Offline: edit the job script to run Arm MAP in “profile” mode
S map --profile mpirun ./myapp.exe argl arg2

View profile in MAP:

On the login node:
S map myapp_Xp_Yn_YYYY-MM-DD_HH-MM.map
(or load the corresponding file using the remote client connected to the remote system or locally)

26 © 2019 Arm Limited a r m

MAP command line options

$ map ——help
Arm Forge 18.2.1 — Arm MAP

Usage: map [OPTION...] [PROGRAM [PROGRAM_ARGS]]
map [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
map [OPTION...] [MAP_FILE]

——connect Reverse Connect (launch as a server and wait for the GUI to connect)
——cuda-kernel-analysis Analysis of the CUDA kernel source code lines

—Llist-metrics Display metrics IDs which can be explicitly enabled or disabled.
——disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
——enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
——export=FILE.json Exports a specified .map file as JSON

—export-functions=FILE Export all the available columns in the functions view to a CSV file (use ——profile)
——select-ranks=RANKS Select ranks to profile.

——mpiargs=ARGUMENTS command line arguments to pass to mpirun

-n, ——np, ——processes=NUMPROCS specify the number of MPI processes

——nodes=NUMNODES configure the number of nodes for MPI jobs

——procs—per—-node=PR0OCS configure the number of processes per node

—profile run through program without user interaction

27 © 2019 Arm Limited a r m

Arm Performance Reports

Characterize and understand the performance of HPC application runs

Gathers a rich set of data

%
%, - Analyses metrics around CPU, memory, 10, hardware counters, etc.

Commercially supported - Possibility for users to add their own metrics

b e
vAm Build a culture of application performance & efficiency awareness
- Analyses data and reports the information that matters to users
@ - Provides simple guidance to help improve workloads’ efficiency

Adds value to typical users” workflows

Accurate and astute
insight - Define application behaviour and performance expectations

- Integrate outputs to various systems for validation (e.g. continuous
v, integration)
6_:(- Can be automated completely (no user intervention)

Relevant advice
to avoid pitfalls

28 © 2019 Arm Limited a r m

Arm Performance Reports

A high-level view of application performance with “plain English” insights

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /
arm =i L
PERFORMANCE ./Bin/low_freq/../../../../Input/input_250x125_corner.nm| | A breakdown of the 16.2% 1/0 time:
REPORTS 2 noc?es (8 physical, 8 logical cores per node) Time in reads 0.0% |
15 GiB per node
16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% N
node-1 .
Thu Jul 9 2015 10:32:13 Effective process read rate 0.00 bytes/s |
éisl stc:’cnds (about 3 minutes) Effective process write rate 1.38 MB/s I
in/..

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

C 20.6% - Time spent running application code. High values are usually good.
om pUte : This is very low; focus on improving MPI or 1/O performance first
_ Time spent in MPI calls. High values are usually bad.
MPI 63.2% This is high; check the MPI breakdown for advice on reducing it
O 16.2% . Time spent in filesystem 1/0O. High values are usually bad.
I/ . This is average; check the I/O breakdown section for optimization advice

29

© 2019 Arm Limited a r m

Understand application behaviour now

Set a reference for future work

mpiexec ./mmult_c.exe 7168 Compute

1 node (28 physical, 56 logical cores per node)

125 GiB per node
allinea 28 processes
PERFORMANCE

REPORTS 163 S

Wed May 17 2017 10:25:58 (UTC+10)
33 seconds

W
- Choose a representative test cases with known results
- Analyse performance on existing hardware (e.g. x86)
. with Arm Performance Reports
- Test scaling and note compiler flags

/short/c25/pw9396/allinea_wshop-day1/
0_charac_performance

Summary: mmult_c.exe is Compute-bound in this configuration

Compute o2+ |
MPI 2ox [
1/0 1266 [l

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

Time spent running application code. High values are usually good.
This is average; check the CPU performance section for advice
Time spent in MPI calls. High values are usually bad.

This is low; this code may benefit from a higher process count

Time spent in filesystem 1/0. High values are usually bad.

This is low; check the 1/0 breakdown section for optimization advice

- Example
- $> perf-report

As little time is spent in MP| calls, this code may also benefit from running at larger scales.

mpirun -n 16 mmult.exe

CPU MPI Memory 1/0

Per-process memory usage may also affect scaling

Threads

A breakdown of how multiple threads were used

A breakdown of the 62.8% CPU time A breakdown of the 24.6% MPI time: A breakdown of the 12.6% 1/0 time

Scalar numeric ops 0.2% | Time in collective calls 6.3% | Mean process memory usage 448 Mig [l Time in reads 0.0% | Computation 0.0%

Vector numeric ops 13.4% 1 Time in point-to-point calls 93.7% N Peak process memory usage 1.24 Gi3 I Time in writes 100.0% [N Synchronization 0.0%

Memory accesses 80.3% [N Effective process collective rate 0.00 bytes/s | Peak node memory usage 16.0% W Effective process read rate 0.00 bytes/s | Physical core utilization ~ 99.7% [l
Effective process point-to-point rate 114 mB/s N Effective process write rate 3.56 MB/s I System load 101.8%

The per-core performance is memory-bound. Use a profiler to There is significant variation between peak and mean memory

identify time-consuming loops and check their cache
performance.

30 © 2019 Arm Limited

Most of the time is spent in point-to-point calls with an average
transfer rate. Using larger messages and overlapping
communication and computation may increase the effective
transfer rate.

usage. This may be a sign of workload imbalance or a memory
leak.

The peak node memory usage is very low. Running with fewer MPI
processes and more data on each process may be more efficient

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/0 profiler to
investigate which write calls are affected

No measurable time is spent in multithreaded code.

arm

Arm Performance Reports Metrics

Lowers expertise requirements by explaining everything in detail right in the report.

Multi-threaded

parallelism

31 © 2019 Arm Limited

CPU

A breakdown of the 91.2% CPU time:

Single-core code

OpenMP regions

Scalar numeric ops

Vector numeric ops

30.6% W

% I .
/ parallelism
9.5% |

o0n

SIMD

Memory accesses

The per-core perform
identify time-consumj
performance.
No time is spent in v
compiler's vectorizat|
be vectorized.

MPI

Of the 41.3% total time spentin MPI calls:
Time in collective calls
Time in point-to-point calls ~ 0.0% |
Estimated collective rate
Estimated point-to-point rate 0 bytes/s |

All of the time is spent in col

100.0% |

4.07 bytes/s |1

I/0

A breakdown of how the 53 9% total /O time was spent:

Time in reads
Time in writes
Estimated read rate|
Estimated write rate]
Most of the time is §
transfer rate. This n]

inefficient access p4
write calls are affectj

i Load
imbalance

Memory

Per-process memory usage may also affect scaling:

160 Mb

Mean process memory usage

Peak process mem
Peak node memory
The peak node men|

the total number of
processes and mord

This suggests a significant | O pen MP

synchronization overhead. Y]

MPI profiler.

Computation 58.9% N
Synchronization 41.1% 1A

Physical core utilization 100.0% Il
System load 99.7% N

Check the affected regions with a profiler.

regions in tight loops) or workload imbalance.

A breakdown of the 99.5% time in OpenMP regions:

e

Significant time is spent synchronizing threads in parallel regions.

This may be a sign of overly fine-grained parallelism (OpenMP

Lustre

Lustre file operations (per node)

Mean write |
Peak write
Mean file op|

Mean metad|

OMP

efficiency

System
usage

Energy

A breakdown of how the 32.3 Wh was used
CPU 61.9% N

System 38.1% I

Mean node power 94.1' W [N

98.0w NN

Peak node power

Significant time is spent waiting for memory accesses. Reducing
the CPU clock frequency could reduce overall energy usage.

arm

Arm Performance Reports cheat sheet

Generate text and HTML reports from application runs or MAP files

Load the environment module:
S module load reports

Run the application:
perf-report mpirun -n 8 ./myapp.exe

... or, if you already have a MAP file:
perf-report myapp_8p_1n_YYYY-MM-DD_HH:MM.txt

Analyze the results
S cat myapp_8p_1n_YYYY-MM-DD_HH:MM.txt
S firefox myapp_8p_1n_YYYY-MM-DD_HH:MM.html

© 2019 Arm Limited

arm

Performance Reports command line options

$ perf-report —help
Arm Performance Reports 18.2.1 — Arm Performance Reports

Usage: perf-report [OPTION...] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] (mpirun|mpiexec|aprun|...) [MPI_ARGS] PROGRAM [PROGRAM_ARGS]
perf-report [OPTION...] MAP_FILE

—Llist-metrics Display metrics IDs which can be explicitly enabled or disabled.
——disable-metrics=METRICS Explicitly disable metrics specified by their metric IDs.
——enable-metrics=METRICS Explicitly enable metrics specified by their metric IDs.
——mpiargs=ARGUMENTS command line arguments to pass to mpirun

——nodes=NUMNODES configure the number of nodes for MPI jobs

-0, —output=FILE writes the Performance Report to FILE instead of an auto-generated name.
-n, ——np, ——processes=NUMPROCS specify the number of MPI processes

——procs—per—-node=PR0OCS configure the number of processes per node for MPI jobs
——select-ranks=RANKS Select ranks to profile.

33 © 2019 Arm Limited a r m

~ Compute
Optimization with
- ArmMAP

CCC and the ORNL GPU Hackathon @ Pawsey

Quantum collisions in atomic and molecular physics -

e CCC: Quantum mechanics
« Fusion energy
- Laser science
- Lighting industry
- Medical imaging / therapy
« Astrophysics

* lIgor Bray, Head of Physics and Astronomy, and the
Theoretical Physics Group, in the Faculty of Science
and Engineering, at Curtin University

% Curtin University

35 © 2019 Arm Limited

arm

Initial Profile

o0 e = [home/igor/group/B3+/PRODUCTION/FINE_ENERGY_SCAN/402.2000000eV/cced_profile_192p_8n_24t_2018-04-18_19-19.map - Arm MAP - Arm Forge 18.1.2 [Trial Version]

36

Profiled: cced profile on 192 processes, 8 nodes, 192 cores (1 per process) Sampled from: Wed Apr 18 2018 19:19:10 (UTC+08) for 1,453.08

Application activity

Memory usage

oG8

o
19:19:40-19:34:09 (868.918s, 59.8% of total): Main thread compute 0.5 %, OpenMP 58.4 %, MPI in OpenMP 0.5 %, MPI 0.0 %, File I/O 0.0 %, OpenMP overhead 10.5 %

=

T o e [— 00
668 £irst_time, states, nchpmax
669
iy e eng eq.) e Breakdown of the 0.0% time spent on this li
671
612 iparity = (-1)** (g + ipar) Executing instructions 100.0%
73 neht - 0 Calling other functions ~ 0.0%
674 nchp =
:;: - Time in instructions executed:
<0.1% 7 1
8 Scalar floating-point 0.0%
<0.1% 679 Vector floating point 0.0%
680
601 c This is a horrible "hack®, its purpose is to include “unnatural® parity states, Scalar integer 0.0%
682 1 4 4 g . 1 ng £ 1g=0
683 C 1t proauces adaitionas channels for 190 that in BEiRCIPa Should ot be there LA s
684 ¢ but they are coming out with zero V-matrix due to the parity and ang.mom. considerations anyway... Memory access 100.0%
685)**la
686 1f (ipar(nchp).ne.0.and.lg.ne.0) lapar = lpar(N) Branch C
- 687 < Other 0.0%
InputOutput Project Files OpenMP Stacks OpenMP Regions |ISURGHORSN
Functions 00
Self Total MPI Child Overhead Function A
<0.1% 88.8% 88.8% <0.1% cce
<0.1% <0.1% <0.1% <0.1% cge
<0.1% <0.1% cnj [inlined]
<0.1% <0.1% <0.1% cof3j [inlined]
<0.1% <0.1% <0.1% <0.1%
<0.1% <0.1% coul80
<0.1% <0.1% <0.1% coulce
4.6% 10.5% 5.9% form
<0.1% 0.3% 0.2% getchchar
30.1% MMM ___ 394% 0.4%
<0.1% <0.1% getchinfo
<0.1% 0.8% 0.7% getformout
0.9% 10.4% 9.5% getformout2 [inlined]
1.8% 21% 0.3% getformout3 [inlined]
<0.1% <0.1% getprod

Showing data from 114,816 samples taken over 192 processes (598 per process) Am Forge 18.1.2 C 1o igor au & OpenMP View /

© 2019 Arm Limited

arm

Load balancer is imbalanced?

« Before:
. 0 8 0 -10 199 329 492 1.21 13530

LG, node, ipar, inc,vt,il1,1i2,tperi,nch,naps,mt,prev LG,eff
. 1 8 0 -7 591 573 872 1.97 45150

LG, node, ipar, inc,vt,il1,1i2,tperi,nch,naps,mt,prev LG,eff
. 2 8 0 -16 894 762 1153 2.28 77028

LG, node, ipar, inc,vt,il1,1i2,tperi,nch,naps,mt,prev LG,eff
. 3 8 0 -24 916 886 1331 2.05 99681

LG, node, ipar, inc,vt,il1,1i2,tperi,nch,naps,mt,prev LG,eff

37 © 2019 Arm Limited

89

350

607

766

arm

Initial Profile

38

© 2019 Arm Limited

Self
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%

4.6%
<0.1%
39.1% i, -
<0.1%
<0.1%
0.9%
1.8%
<0.1%

~ _ans

Showing data from 114,816 samples taken over 192 processes (598 per process)

Total
88.8%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
<0.1%
10.5%
0.3%
39.4%
<0.1%
0.8%
10.4%
2.1%
<0.1%

~ _ans

MPI

Child
88.8%
<0.1%

<0.1%
<0.1%

<0.1%
5.9%
0.2%
0.4%

0.7%
9.5%
0.3%

~ _ant

Overhead
<0.1%
<0.1%

<0.1%

o _ant

Function

cce

cgc

cnj [inlined]

cof3j [inlined]

cof6j

coul90

coulcc

form

getchchar

getchinfo

getchinfo
getformout
getformout2 [inlined]
getformout3 [inlined]
getprod

Surprise! Didn’t expect that.

arm

Results and Final Profile

Application activity

CPU floating-point =
2208%

Memory usage =
079GE

17:04:52-17:13:44 (531.448s, 53.9% of total): Main thread compute 0.7 %, OpenMP 83.4 %, MPI in OpenMP 0.3 %, MPI 0.0 %, File I/O 0.0 %, OpenMP overhead 15.2 %, Sleeping (.0 %

= [home/igor/group/B3+/PRODUCTION/FINE_ENERGY_SCAN/402.4000000eV/cccd_profile_192p_8n_24t_2018-04-19_17-04.map - Arm MAP - Arm Forge 18.1.2 [Trial Version]
Profiled: ceed profile on 192 processes, 8 nodes, 192 cores (1 per process) Sampled from: Thu Apr 19 2018 17:04:41 (UTC+08) for 986.0s

Zm 50

na - na_ng (K}

Time spent on line 688 (X x]}

39 © 2019 Arm Lim

680 5
BB - r. . o mhacke, ste purpose te to tociude ~emsatarer® pactsy states, Breakdown of the 0.0% time spent on this line:
682 1 " ity B- 3 nannel ng for 1g=0 .
€85 S It praduces adaitionas chammels for 13-0 that in princisel sheuid net be there Exoculing inetructions . 100.0%
684 c but they are coming out with zero V-matrix due to the parity and ang.mom. considerations anyway... Calling other functions ~ 0.0%
€85
:; . Time in instructions executed:
<0.1% 688
oy Scalar floating-point 0.0%
690 Vector floating point 0.0%
500 Scalar integer 0.0%
710 nddo
21 enddo Vector integer 0.0%
712 print*, 'Could not find this channel: nch=',nch, Memory access 100.0%
n3 o ', 1g,ipar:’,lg, ipar
714 acn o T o Branch (
15 retu Other 00%
InputOutput Project Files OpenMP Stacks OpenMP Regions |SURGHORSN
Functions 200
Seif Total MPI Child Overhead Function Iy
7.3% 16.8% 9.6% form
<0.1% 0.3% 0.3% getchchar
5.2% o getchinfo
<0.1% <0.1% getchino i
0.1% 1.4% 1.3% getformout
1.3% 16.3% 15.0% getformout?2 [inlined]
2.7% 3.2% 0.5% getformout3 [inlined]
<0.1% <0.1% getprod
<0.1% <0.1% ffirst1 [inlined]
<0.1% <0.1% lagpol [inlined]
<0.1% 03% 03% 03% MAIN__ [OpenMP region 1]
0.3% 0.4% 0.1% makechil
<0.1% <0.1% <0.1% makegreen
<0.1% <0.1% <0.1% makeps
1.4% 1.9% 0.5% maketail
Showing data from 103,488 samples taken over 192 (539 per process) Arm Forge 18.1.2 C to: igor au & OpenMP View

Results and Final Profile

40

4.6% 10.5%
<0.1% 0.3%
39.1"/:_ 39.4?%
<0.1% <0.1%
<0.1% 0.8%

5.9%
0.2%
0.4%

0.7%

form
getchchar
getchinfo
getchinfo
getformout

Self
7.3%
<0.1%
5.2%
<0.1%
0.1%

© 2019 Arm Limited

Total MPI Child
16.8% 9.6%
0.3% 0.3%
5.6% 0.4%
<0.1%

1.4% 1.3%

Overhead

Function
form
getchchar
getchinfo
getchinfo
getformout

arm

Balanced load balancer

- Before:

. 0 8 0 -10 199 329 492 1.21 13530 0 89 -1 91% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
. 1 8 0 -7 591 573 872 1.97 45150 0 3506 @ 80% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
. 2 8 0 -16 894 762 1153 2.28 77028 0 607 1 86% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
. 3 8 0 -24 916 886 1331 2.05 99681 0 766 2 91% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
« After:

. 0 8 0 -10 174 329 492 1.06 13530 0 85 -1 93% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
. 1 8 0 -11 415 577 872 1.40 43956 0 3406 @ 97% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff
. 2 8 0 -11 616 757 1153 1.55 79003 0 592 1 97% LG,node,ipar,inc,vt,il,i2, tperi,nch,naps,mt,prev LG,eff
. 3 8 0 -12 667 874 1331 1.46 105111 0 734 2 96% LG,node,ipar,inc,vt,il,i2,tperi,nch,naps,mt,prev LG,eff

41 © 2019 Arm Limited a r m

1/0 Optimization
with Arm MAP

Why does I/O have such a huge impact on performance?

/O has the potential to make or break the performance of the whole system.

* A shared resource on practically all HPC systems.
- Bandwidth to disk is shared between processes.
- Bandwidth to network is shared between nodes.

* Has the potential to affect the performance of other users' jobs.

- Data are physically located outside the compute node.
« Using shared I/0 outside the compute node has an impact on the

performance of other users' jobs.
- Even if other users are not using the shared filesystem, communicating
with the filesystem over the network can affect other user’s inter-node

communications (e.g. MPI).

* The slowest tier of the memory hierarchy.
« Small mistakes in 1/O can cost more than huge mistakes on-chip
- Simple, low effort optimizations in I/O will pay out more than high effort
optimizations on-chip.

43 © 2019 Arm Limited

m
g
£
R
>
c

Cori with Aries Networl

e -
o -
130 - -

arm

Reduction isn’t an option: have to optimize I/0O

Models require high resolutions to accurately describe physical conditions.

Denver, CO

0.8 7 — obs — 200km — 12km@200km —— 12km
0.7 -

0.6 —
05 -
0.4 -
0.3 -
02 —\/:Ve
0.1
0.0 -

CO [ppmv]

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
June 2014

Credit: NASA GMAOQO, Christoph Keller.

44 © 2019 Arm Limited a r m

https://gmao.gsfc.nasa.gov/research/science_snapshots/2017/hi-res_atmos_chem_comp.php

Simple approaches to parallel I/0

Simple approaches work for small applications, but typically don’t scale.

 1-1: Master and workers
A master process performs I/O on behalf of many workers. ‘ ‘ '
Collective operations (e.g. MPl_Gather, MPI_Scatter) move data
to/from workers.
Performance bottleneck at the master.

* N —N: Every process for itself

Each process reads/writes it’s own data in a uniquely named file.
Large number of open files can quickly degrade performance. .

00
50 B N-N
II H MPI-10
0 [|

0-4k 4k-16k 16k-160k

Credit: Argonne National Lab

46 © 2019 Arm Limited a r m

1

% Core-hours

https://www.youtube.com/redirect?event=video_description&v=P-ivEZ4GyUg&redir_token=nqA4arn8Q_ZWZBITiQGlup20iLJ8MTUzMTMwNjA2NEAxNTMxMjE5NjY0&q=http://extremecomputingtraining.anl.gov/files/2017/08/ATPESC_2017_Track-3_02_8-4_9am_Carns-IO_Transformations.pdf

Treating parallel I/O like shared memory
Use a library like MPI-10 or HDF5 for optimal portability and performance.

* N-—1: Multiple writers to same resource
« Many processes read/write to the same resource, e.g. a file.

Files broken up in to lock units; boundaries determined by system.
Clients must obtain locks before performing 1/0.
Enables caching: as long as client holds the lock the cache is valid.

* N-—M: Cooperating gangs
Groups of processes combine to operate on shared resources.
Mirroring physical hardware infrastructure can improve performance
Implementation best left to the libraries.
Balance gang size against available bandwidth.

47 © 2019 Arm Limited a r m

Understand your I/O system

Use portable, cross-platform tools and libraries.

* Storage systems host filesystems
Lustre, GPFS, BeeGFS: POSIX-compliant block storage designed for scalability.
Ceph: Object storage, block storage, and POSIX-compliant filesystem.

* Infrastructure hosts storage systems
The network fabric connects all compute nodes in a predefined (physically hard wired) topology.
I/O nodes serve multiple compute nodes (potential bottleneck)

* Infrastructure can be optimized for HPC

Small local (i.e. non-shared) filesystems, possibly in memory (e.g. /dev/shm)
Burst buffers
NVDIMMS.

48 © 2019 Arm Limited a r m

http://lustre.org/
https://www.ibm.com/support/knowledgecenter/en/SSFKCN/gpfs_welcome.html
https://www.beegfs.io/
https://ceph.com/

Initial profile shows 9.2% of runtime spent just opening files
16.2% of runtime is I/O, but only 5% is spent in read/write operations.

eoe =

OneDrive - Arm/2018/ISC/dk Il

s/ Demos/07_« i X

Main thread activity

CPU floating-point
123%

Disk read transfer

Profiled: hydro on 16 processes, 2 nodes Sampled from: Thu Jul 9 2015 10:32:13 for 164.9s

disk.map - Arm MAP - Arm Forge 18.1.2

Hide Metrics...

Disk write transfer
003 MBvs

Memory usage

303MB

10:32:13-10:34:57 (164.911s): Main thread compute 0.3 %, OpenMP 19.6 %, MPI 63.2 %, File /0 16.2 %, OpenMP overhead 0.5 %, Sleeping 0.2 %

49 © 2019 Arm Limited

13.3% o 28% 02%

bttt ettt
Showing data from 16,000 samples taken over 16 processes (1000 per process) Arm Forge 18.1.2 » Main Thread View z

»hydro_godunov

hydro godunov(2, dt, H, &Hv, &Hw godunov, &Hvw godunov);

220 % #if FTI==0
0.5% Py s 1221 if (H.nproc > 1) MPI_Barrier (MPI_COMM_WORLD);
222 fendif
223 ¥ #if FTI>0
224 if (H.nproc > 1) MPI_Barrier (FTI_COMM_WORLD) ;
225 tendif
226 fendif
227
228 // Weite a demain per PE
229 sprintf (name, "%s/Hydro 8054 %04d.vtr", vfrname, H.mype, step);
9.2% 230 fic = fopen(name, “w7);
231 v if (fic == NULL) {
232 fprintf (stderr, "Ouverture du fichier is impossible\n", name);
233 exit(l);
234
235 fprintf(fic, "<?xml version=\"1.0\"2>\n");
236 fprintf(fic, "<V ype=\"Rectilinea: d\" byte_order=\"LittleEndian\">\n");
237 fprintf(fic, " < arGrid WholeExt A" %d %d %d %d %d ¥d\">\n",
238 H.box [XMIN_BOX), H.box[XMAX_BOX], H.box[YMIN_BOX], H.box[YMAX_BOX], 0, 1)
233 fprintf(fic, * <Piece Extent=\" %d %d ¥d d %d Vd\" Ghostlevel=\"0\">\n",
240 H.box [XMIN_BOX], H.box[XMAX_BOX], H.box[YMIN_BOX], H.box[YMAX_BOX], 0, 1):
InputOutput Project Files |[MaiRTHeAdISIAGKSI Functions
Main Thread Stacks [5 X x]
Total core time v MPI Overhead Function(s) on line Source Position
v & hydro [program]
¥ ¢/ main main(int argc, char **argv) {
29.9% stttk 29.9% MPI_Alireduce MPI_Allreduce (sflopsAri, &flopsAri_t, 1, MPI_LONG, MPI_SUM, MPI ..
wvtkfile vtkfile (++nvtk, H, &Hv);
9.2% albiddtellasuaime ’ fic = fopen(name, "w");
7.3% i dnladntieittume 7-3% MPI_Barrier if (H.nproc > 1) MPI_Barrier (MPI_COMM_WORLD);
6.4% Sautanies »fclose fclose (fic);
0.9% J »7 others

main.c:284

arm

Almost 30% of hotspot runtime is I/0O

File open and close operations are very expensive on this filesystem.

50

_checkpoints/2n_checkpoints_disk.map - Arm MAP - Arm Forge 18.1.2

Hide Metrics...

File I/0 29.2 %, OpenMP overhead 0.1 %, Sleeping 0.2 %

Zoom

al;

2

®

Intermediate files for visualization are being written to disk.
Fix: write intermediate files to an in-memory filesystem, e.g. /dev/shm.

© 2019 Arm Limited

Total core time

17.5%
12.6%
11.2%

1.6%

P Y W

v MPI

bhoddodsnadhbobebbabstbbanity

shadinahidadnodiddbin iy 12.6%

b hardovadisandiadakodyduiida

o} 1.6%

arm

Easy fix: write intermediate files to /dev/shm

Writing temporary files to in-memory filesystem can dramatically improve performance.

51

© 2019 Arm Limited

[2N] = [Users/johlin02/OneDrive - Arm/2018/ISC)

s/ Demos/07. ints/2n,

Profiled: hydro on 16 processes, 2 nodes Sampled from: Tue Jul 14 2015 13:07:32 for 67.7s

Main thread activity

CPU floating-point

140%

Disk read transfer
oBss

ram.map - Arm MAP - Arm Forge 18.1.2

Disk write transfer
060kBis

0
" \sage s

o
13:07:32-13:08:39 (67.666s): Main thread compute 0.4 %, OpenMP 22.4 %, MPI 75.5 %, File I/0 0.9 %, OpenMP overhead 0.5 %, Sleeping 0.2 %

Showing data from 16,000 samples taken over 16 processes (1000 per process) Arm Forge 18.1.2 » Main Thread View 4

228 /1 ¥rite a domain per PE

229 sprintf (name, "¥s/Hydro $05d 404d.vtr", vfrname, H.mype, step):

230 Tic - Topen (name, ~w"1i]

231 v if (fic == NULL) {

232 fprintf (stderr, “OCuverture du fichier Vs impossible\n", name):

233 exit(1):

234 }

235 fprintf (fic, "<?xml version=\"1.0\"7>\n");

236 fprintf (fic, "<VTKFile type=\"RectilinearGrid\" byte_order=\"LittleEndian\">\n

23 fprintf(fic, " <RectilinearGrid Who. tent=\" %d %d %d %d Vd Wd\"™ v

238 H.box [XMIN_BOX], H.box[XMAX_BOX], H.box [YMIN_BOX], H.box[YMAX_BOX], 0, 1):

239 fprintf(fic, * <Plece Extent=\" %d ¥d 4d ¥d ¥d ¥d\" Ghostlevel=\"0\">\n",

240 H.box [XMIN_BOX], H.box[XMAX_BOX), H.box [YMIN_BOX], H.box[YMAX_BOX], 0, 1):

241 fprintf(fic, " <Coordinates>\n");

242

243 fprintf(fic, * <DataArray type=\"Float32\" format=\"ascii\" NumberOfComponents=\"1\">\n");

266 & for (i = H.DoX[XMIN_BOX]; i <= H.bOX[XMAX_BOX]; i++) {

245 fprintf(fic, "V *, i * H.dx);

246 }

InputOutput Project Files |UMBINMTIGaISIAckSI Functions
Main Thread Stacks 00
Total core time v MPI Overhead Function(s) on line Source Position
v 2 hydro [program]
v/ main main(int argc, char **argv) { main.c:140

38.3%, i 38.3% MPI_Allreduce MPI_Allreduce (&flopsAri, &flopsAri_t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:300
14.6% 3.3% 0.2% »hydro_godunov hydro_godunov(2, dt, H, &Hv, &Hw_godunov, &Hvw_godunov); main.c:284
T46% it 3:3% 0.2% »hydro_godunov hydro_godunov(l, dt, H, &Hv, &Hw_godunov, &Hvw_godunov); main.c:281
11.6%, - 11.6% MPI_Alireduce MPI_Allreduce (sflopsSqr, &flopsSgr_t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:301
9.9% 9.9% MPI_Alireduce MPI_Allreduce (4dt, &dtmin, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORL.. main.c:262
4.5% 4.5% MPI_Allreduce MPI_Allreduce (sflopsMin, &flopsMin_t, 1, MPI_LONG, MPI_SUM, MPI_.. main.c:302

arm

After fix, only 0.9% of runtime spent in I/O

Writing temporary files to in-memory filesystem can dramatically improve performance.

[NON J “" /Users/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/07_checkpoints/2n_checkpoints_ram.map - Arm MAP - Arm Forge 18.1.2
Profiled: hydro on 16 processes, 2 nodes Sampled from: Tue Jul 14 2015 13:07:32 for 67.7s Hide Metrics...
CPU floating-point e ~ B I .)) i - B \
1 4.0 9% s a> aa e kb — b - . - — = iy .'...' '_- .'-___f__._.____'. :_ __l._.‘._ G ‘__.-_' _‘._.'.-._ '_'_'___.._.'.' 'A__.'___.—_. ____‘ ._'.'_'.._'.‘.—__._ '_-_'_'.'...._'___'.. '.'.' '_'.'.d._ e _-__ - e - - X
O e A e e e e e e e T e e e e e e N e e e e e e e e e e e e e e e e ot~ e =t et T T s e e e e
Disk read transfer °
0B/s
0
Disk write transfer s ‘
0.60 kB/s
0 "
Memory usage e
28.1 MB ‘
0
13:07:32-13:08:39 (67.666s): Main thread compute 0.4 %, OpenMP 22.4 %, MPI 75.5 %, File 1/0 0.9 %, OpenMP overhead 0.5 %, Sleeping ©.% % Zoom &1 :=| ©
Total core time v MPI Overhead Function(s) on line
v & hydro [program]
v ¢/ main
383%M 38.3% MPI_AIIreduce
14.6% 3.3% 0.2% »hydro_godunov
14.6% " " ~— 3.3% 0.2% »hydro_godunov
1.6%, .. . aisimsae . 11.6% MPI_Alireduce
9.9% A . 9.9% MPI_Alireduce
4.5% | . 4.5% MPI_Alireduce

Showing data from 16,000 samples taken over 16 processes (1000 per process)

52 © 2019 Arm Limited a r m

Arm Performance Reports

High-level view of application performance shows low write rate.

mpiexec.hydra -host node-1,node-2 -map-by I O
socket -n 16 -ppn 8 ./Bin/low_freq/../../Src//hydro /
arm =i L
PERFORMANCE ./Bin/low_freq/../../../../Input/input_250x125_corner.nm| | A breakdown of the 16.2% 1/0 time:
REPORTS 2 noc?es (8 physical, 8 logical cores per node) Time in reads 0.0% |
15 GiB per node
16 processes, OMP_NUM_THREADS was 1 Time in writes 100.0% N
node-1 .
Thu Jul 9 2015 10:32:13 Effective process read rate 0.00 bytes/s |
éisl stc:’cnds (about 3 minutes) Effective process write rate 1.38 MB/s I
in/..

Most of the time is spent in write operations with a very low
effective transfer rate. This may be caused by contention for the
filesystem or inefficient access patterns. Use an 1/O profiler to

Summary: hydro is MPI-bound in this configuration | investigate which write calls are affected.

C 20.6% - Time spent running application code. High values are usually good.
om pUte : This is very low; focus on improving MPI or 1/O performance first
_ Time spent in MPI calls. High values are usually bad.
MPI 63.2% This is high; check the MPI breakdown for advice on reducing it
O 16.2% . Time spent in filesystem 1/0O. High values are usually bad.
I/ . This is average; check the I/O breakdown section for optimization advice

53 © 2019 Arm Limited a r m

After the fix, write rate has improved 41.6x

Eliminating file open/close bottleneck has dramatically improved /O performance.

mpiexec.hydra -host node-1,node-2 -map-by |/O
socket -n 16 -ppn 8 ./Bin/../Src//hydro -i
arm ./Bin/../../../Input/input_250x125_corner.nml A breakdown of the 0.9% 1/0 time:
PERFORMANCE 2 nodes (8 physical, 8 logical cores per node)

REPORTS 15 GiB per node Time in reads 0.0% |
rl‘gdper_oi:esses, OMP_NUM_THREADS was 1 Time in writes 100.0% I
Tue Jul 14 2015 13:07:32 Effective process read rate 0.00 bytes/s |
68 seconds (about 1 minutes
Sre ¢) Effective process write rate 57.5 MB/s I

Most of the time is spent in write operations with a low effective
transfer rate. This may be caused by contention for the filesystem
or inefficient access patterns. Use an 1/O profiler to investigate

Summary: hydro is MPI-bound in this configuration | which write calls are affected.

23.5% - Time spent running application code. High values are usually good.
Com pUte 5 This is very low; focus on improving MPI or |/O performance first
75 5% _ Time spent in MPI calls. High values are usually bad.
MPI : This is very high; check the MPI breakdown for advice on reducing it
| Time spent in filesystem 1/0. High values are usually bad.
|/O 0.9% This is very low; however single-process 1/0 may cause MPI wait times

54 © 2019 Arm Limited a r m

Initial profile of CloverLeaf shows surprisingly unequal I/0

Each 1/O operation should take about the same time, but it’s not the case.

55

© 2019 Arm Limited

e e = A 1 dneDrive - Arm/20 Demos/11_lustre/Large_orig.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover_leaf on 32 processes, 4 nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 07:59:11 (UTC) for 408.1s Hide Metrics...
Application activity
Disk read transfer e
0.00 vBis
ol
Disk write transfer o T

023 M8is

. by

01:59:11-02:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File /O 8.6 %, Synchronisation 0.0 %, OpenMP overhead 0.1 %, Sleeping ©.5 %

137 WRITE (u, ' (a)") 'FIELD FieldData 4°
138 WRITE (u, ' (a,120,a) ') 'density 1 ',nxc*nyc,' double’
139 v DO k= les(tile) $t_ymin, chunk¥tiles (tile)3t_yma:
0.5, A . 140 ITE (u, ' (€12.4) ') (chunkbtiles (tile) bfieldbdensity0 (), k) ,3=chunkbtiles (tile) bt_xmin, chunkitiles (tile) ¥t _xmax)
141 3
142 TE (u, ' (a,120,a) ') ‘energy 1 ',nxc*nyc,' double'
143 v DO k= les(tile) %t_ymin,chunk¥tiles (tile)¥t_ymax
1.24, 5 o 148 WRITE (u, ' (€12.4) ') (chunkbtiles (tile) ¥fieldbenergy0 (), k), J-chunkitiles (tile) bt_xmin, chunkbtiles (tile) bt_xmax)
145 e
146 £(u, " (a,120,a) ') 'pressure 1 *,nxc*nyc,’ double'
147y tile) st _ymi
108, 5 - 148
143
150 WRITE (u, ' (a,120,a) ') 'viscosity 1 ',nxc*nyc,' double'
151 v DO k= les(tile) $t_ymin,chunkitiles (tile) ¥t_ymax
152 v 00 j-chunkétiles(tile) t_xmin,chunkbtiles (tile) bt_xmax
153 temp_var=0.0
<0.1% 154 IF (chunkétiles(tile) dfield¥viscosity (3, k) .GT.0.00000001) temp_: iles(tile)st 3%
2.2%, a . WRITE (u, ' (€12.4)") temp_var
156
157
158 WRITE (u, ' (a,120) ') 'POINT_DATA ', nxv*nyv
159 WRITE (u, ' (a)") 'FIELD FieldData 2°
160 WRITE (u, ' (a,120,a) ') "x_vel 1 ',nxv*nyv,' double'
16w 00 k-chunkatiles (tile) 3t _vmin.chunkitiles (tile it vnax:]
Input/Output Project Files |UOBSAMBISISGKSI OpenMP Regions Functions
OpenMP Stacks o0
v MPI Overhead Function(s) on line Source Position
<0.1% »flux_calc_module::flux_calc CALL flux_cale() hydro.f90:60
<0.1% »reset_field_module::reset_field CALL reset_field() hydro.f90:64
wvisit IF (MOD(step, visit_frequency).EQ.0) CALL visit() hydro.f90:74
0.4% i) _gfortran_st_set_nml_var_dim WRITE (u, ' (el2.4) ') les(tile)$fiel (3, k), j=chunk.. visit.f90:148 |
|
0.3% N »_gfortran_st_set_nml_var_dim WRITE (u, ' (€12.4) ") (chunk%tiles(tile)%fiel (3. %) .3 3 |
03% N »_gfortran_st_write_done, _gfortran_... WRITE(u,'(el2.4)') temp_var J
0.3% . »_gfortran_st_write_done, _gfortran_... WRITE (u,'(e12.4)"') temp_var
0.3% 0 »_gfortran_st_write_done, _gfortran_... WRITE (u,'(el2.4)"') temp_var visit.f90:173
0.2% »_gfortran_st_set_nml_var_dim WRITE (u, ' (€12.4) ') (chunk&tiles (tile)%field%density0 (j, k), j=chunk.. visitf90:140

I
Showing data from 32,000 samples taken over 32 processes (1000 per process) Arm Forge 18.1.2 & OpenMP View ;

arm

Symptoms and causes of the I/O issues

Sub-optimal file format and surprise buffering.

[NON | = [Users/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/11_lustre/Large_orig.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover leaf on 32 processes. 4

Application activity

Disk read transfer
0.00 MB/s
o4
Disk write transfer I I e
0.23 MBls [0 L5 AT
0 — " - M A ;hﬁ‘\

01:59:11-02:05:59 (408.109s): Main thread compute 2.0 %, OpenMP 60.7 %, MPI 19.1 %, File I/O 8.6 %, Synchronisation .0’ %, OpenMP overhead 0.1 %, Sleeping ©.° % Zggm@ ®

* Write rate is less than 14MB/s.
e Writing an ASCII output file.
* Writes not being flushed until buffer is full.

« Some ranks have much less buffered data than others.

« Ranks with small buffers wait in barrier for other ranks to finish flushing their buffers.

56 © 2019 Arm Limited a r m

57

© 2019 Arm Limited

ene

Profiled: clover leaf on 32 processes, 4
Application activity

CPU floating-point

a78%

Memory usage

151 M8

o N

olution: use HDF5 to write binary files
Using a library optimized for HPC 1I/O improves performance and portability.

OneDrive - Arm/2018/ISC

nodes, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 16:48:08 (UTC) for 335.58

d_Demos/11_lustre/Large_hdf5.map - Arm MAP - Arm Forge 18.1.2

Hide Metrics...

ot
10:48:08-10:53:43 (335.502s): Main thread compute 0.2 %, OpenMP 73.9 %, MPI 21.3 %, File /0 1.8 %, OpenMP overhead 0.1 %, Sleeping .5 %

Zoom |41

“Time spent on line 237

225 hSscreate_simple_f(2, dims2d, space, hdferr) Breakdown of the 0.3% time spent on this line:

226 ! .

227 ! Create the dataset. We will use all default properties for this B 5

238 | example. Executing instructions 0.0%

229 ! Calling other functions 100.0% IEEEEEE—

230 dataset-'pres’

231 CALL hSdcreate_f(file, dataset, HST_IEEE F64LE, space, dset, hdferr)

232

233

234 !

235 ! Write the data to the dataset.

236 !
0.3y, 237 Tite 7(dser, AST WATIVE DOUSLE, chunkWelles(cile)Vfieldipressure, dime: a3

238

239 !

240 ! Close and release resources.

241 !

242 hSdclose_f (dset , hdferr)

243 CALL hSsclose_f (space, hdferr) '

244

205 lmmmmeemeeeseeeeeeceeeeeeeeen

246

247 dims2d(1)~chunkbtiles (tile) ¥t _xmax - chunkitiles(tile)%t xmin + 1

248 dims2d(2) =chunkitiles (tile) ¥t_ymax - chunkitiles(tile)¥t_ymin + 1

249

250 !

251 ! Create dataspace. Setting size to be the current size.

Input/Output Project Files |OPSAMBISIAGKSI| OpenMP Regions Functions
Total core time v MPI Overhead Function(s) on line Source Position
v7 others
0.7% 107% »clover_module::clover_aligather CALL clover_allgather (kernel_total,totals) hydro.190:111
wvisit IF(MOD(step, visit_frequency).EQ.0) CALL visit() hydro.f90:74

0.1%) __h5_dble_interface_MOD_h5dw... CALL h5dwrite_ f(dset, HST NATIVE DOUBLE, chunkitiles(tile)%field. visitf90:237
0.1% »__h5_dble_interface_MOD_h5dw... CALL h5dwrite_f (dset, HST_NATIVE_DOUBLE, chunk¥tiles(tile)%field.. visitf90:321
<0.1% »__h5_dble_interface_MOD_hSdw... CALL h5dwrite f(dset, H5T_NATIVE_DOUBLE, chunk%tiles(tile)%field. visit190:265
<0.1% »__h5_dble_interface_MOD_h5dw... CALL h5dwrite_f (dset, HST_NATIVE_DOUBLE, chunk%tiles(tile)%field.. visitf80:180
<0.1% »__h5_dble_interface_MOD_hSdw... CALL hSdwrite f(dset, H5T NATIVE_DOUBLE, chunk%tiles(tile)%field. visit{90:293
<0.1% »__h5d_MOD_hsdclose_f CALL hSdclose f(dset , hdferr) visit.f90:130

Showing data from 32,000 samples taken over 32 processes (1000 per process) Arm Forge 18.1.2 4 OpenMP View ;

arm

Solution: use HDF5 to write binary files

Using a library optimized for HPC 1I/O improves performance and portability.

([NON] " [Users/johlin02/OneDrive - Arm/2018/ISC/demos/florent-demos/Advanced_Demos/1 1_lustre/Large_hdf5.map - Arm MAP - Arm Forge 18.1.2
Profiled: clover leaf on 32 proggl€®s, 4 T"jgs, 32 cores (1 per process) Sampled from: Tue Nov 8 2016 16:48:08 (UTC) for

Application activity

Disk read transfer
0.08 kB/s

0
75.3

Disk write transfer

0.19 MB/s
0 & R

10:48:08-10:53:43 (335.502s): Main thread compute 0.2 %, OpenMP 73.9 %, MPI 21.3 %, File 1/O 1.8 %, OpenMP overhead 0.1 %, Sleeping 2.5 % @_om 3

* Replace Fortran write statements with HDF5 library calls.

« Binary format reduces write volume and can improve data precision.

« Maximum transfer rate now 75.3 MB/s, over 5x faster.

* Note MPI costs (blue) in the I/0O region, so room for improvement.

58 © 2019 Arm Limited a r m

Advanced /0O investigation of Lustre on Archer

Simultaneously view system-level and application-level performance.

* Show data from Lustre client logs along with application data

* jPIC3D: kinetic simulation of plasma
Fully 3D implicit particle-in-cell (PIC)
C++ and MPI
Intermediate simulation results saved in VTK binary files, single file per
quantity
Checkpointing done through HDF5 to individual files per process
Field values saved using collective MPI-IO to single file

59 © 2019 Arm Limited a r m

Available performance data

Use MAP’s ability to measure filesystem performance at the system and application levels

System level performance data

e Lustre logs: each read, write, or
metadata operation recorded from
each Lustre client.

* Aggregate I/O data for precise
bandwidth figures for read/write at
any moment in time.

Max/min/mean bandwidth.

* Scheduler logs: application run start
and end time and assigned nodes.

60 © 2019 Arm Limited

Application level performance data
* Approximate I/O bandwidth in a
timeline.

* Approximate classification of I/0
instructions (methods).

* In block-synchronous approach, it is
possible to identify different I/O phases.

arm

MAP aligns the system timeline with the application timeline

Lustre data is read from the lustre client’s log files, while application data is read directly.

Profiled: iPIC3D on 1024 processes, 64 nodes Saripled from: Wed Febly 2018 20:02:56 (UTC) for 730.3s .

Main thread activity

Lustre read rate iz
1.57 MB/s

Lustre write rate
0.01 GB/s

Lustre metadata operations %

1.38k /s

Lustre file opens
0.68 k /s

20:02:56-20:15:06 (730.285s): Main thread comglute 13.0 %, OpenMHl36.5 %, MPI 21.4 %, File 1/O 29.1 %, w verhead 0.0 %, Sleeping 0.0 %

N-N file read shows spike in Checkpoint I/O corresponds
file open/read operations. to spike in Lustre write rate

61 © 2019 Arm Limited a r m

We can focus on each |I/O operation individually

Select a portion of the application timeline to view the source code performing 1/0O.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s
Main thread activity

Lustre read rate
1.78 MB/s

Lustre write rate
0.00 GB/s

Lustre metadata operations
1.61k/s

Lustre file opens
0.80k/s

20:05:26-20:05:41 (15.3365, 2.1% of total): Main thread compute 9.2 %, OpenMP 21.4 %, MPI 18.7 %, File /0 50.7 %, OpenMP overhead 0.0 %, Sleeping 0.0 %

Input/Output | Project Files = Main Thread Stacks | Functions | —
Main Thread Stacks
Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program] |
= ¢ main —_—
[=1iPic3D::c_Solver::WriteOutput(int) e
43.4% = N WriteMomentsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopol...
7.4% Tl % WriteFieldsVTK(Grid3DCU*, EMfields3D*, Collective*, VCtopology... co.cr
0.4% 0.2 @1 other H
20.6% pll_ m Az @ iPic3D::c_Solver::ParticlesMover() ca.com
15.5% g A & iPic3D::c_Solver::CalculateField(int) =
12.3% e B B o @ iPic3D::c_Solver::CalculateMoments()
0.3% 0.3 [+ 2 others
62 © 2019 Arm Limited

arm

MAP’s timeline shows 1/O overlapping with communication
We see elevated Lustre write rate when writing checkpoint restart files in HDF5.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s
Main thread activity

1.04 MB/s
0

Lustre write rate 228
0.05 GB/s
0

Lustre metadata operations %%

0.96 k /s
0

Lustre file opens e
0.38k/s

2

Input/Output | Project Files | Main Thread Stacks | Functions |
Main Thread Stacks e

Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program]

_ £ ¢ main
378% 5 @ onillll m O # iPic3D::c_Solver::CalculateField(int) i
. 4.1 + IPIc3D::c_Solver::ParticlesMover(]
-] iPic3D::c_Solver::WriteOQutput(int)

17.5% [e iPic3D::c_Solver::WriteRestart(int) ,ﬁlwmmm
i T other SE e

'ipic3d/iPIC3D.cpp

16.0% _H m B = 27° # iPic3D::c_Solver::CalculateMoments(), _ cray_memcpy_SNB .
0.4% 0.2 # 2 others

7

'ipic3d/iPIC3D.cpp

63 © 2019 Arm Limited q r m

It’s possible to overlap different |/O approaches
HDF5 and VTK I/O operations occur at the same time on different ranks.

Profiled: iPIC3D on 1024 processes, 64 nodes Sampled from: Wed Feb 7 2018 20:02:56 (UTC) for 730.3s

Lustre read rate
0.52 MB/s ‘
ol e
Lustre write rate
0.04 GB/s
L e e S G N e S S
Lustre metadata operations “"
0.55k/s ‘
o

Lustre file opens
n72kic

__—

Input/Output | Project Files = Main Thread Stacks | Functions |

Main Thread Stacks e
Total core time A MPI Overhead Function(s) on line
= & iPIC3D [program]
= # main
= iPic3D::c_Solver::WriteQutput(int)
26.3% JL lerteMomentsVTK(Gnd3DCU‘ EMfields3D*, Collective*, VCtopoI
25.8% h- riteFieldsVTK(Grid3DCU* elds3D*, Collective*, VCto
13.1% -IPIC3D..C_SO er..erteRestart int
T 04% _ <0.1 & 2 others P, o
16.5%g W bk 21 [+ iPic3D::c_Solver::ParticlesMover() e
10.4% .3 .4 i [+ iPic3D::c_Solver::CalculateMoments() 34/main/iPICIDL1B.
[=)iPic3D::c_Solver::CalculateField(int) 3a/1p1C30. cpp
= EMfields3D::calculateE(int) B
6.9% g g a30 [+ GMRES(void (EMfields3D::*)(double*, double*), double*, int, d... Zi o nin s
64 © 2019 Arm Limited

arm

Arm Compilers
- for HPC

GCC is a first-class compiler in the Arm ecosystem

Arm the second largest contributor to the GCC project

e On Arm, GCC is a first class compiler CCC CONTRIBUTIONS 2017-48

alongside commercial compilers.
e GCC ships with Arm Compiler for HPC. others
 Use GCC7 or later! GCC 8+ preferred.

redhat

sifive
intel

oracle

arm

google

ibm

mentor

66 © 2019 Arm Limited a r m

arm COMPILER

Arm’s commercially-supported C/C++/Fortran compiler

Tuned for Scientific Computing, HPC and Enterprise workloads

- Processor-specific optimizations for various server-class platforms
-« Optimal shared-memory parallelism via Arm’s optimized OpenMP runtime

Compilers tuned for Scientific

Computing and HPC Linux user-space compiler with latest features

« C++ 14 and Fortran 2003 language support with OpenMP 4.5
f“'7\ - Support for Armv8-A and SVE architecture extension

- Based on LLVM and Flang, leading open-source compiler projects
Latest features and

performance optimizations CommerCia”y Supported by Arm

- Available for a wide range of Arm-based platforms running leading Linux
& \ Y distributions — RedHat, SUSE and Ubuntu

Commercially supported
by Arm

67 © 2019 Arm Limited q r m

Arm Compiler is built on LLVM, Clang and Flang

C/C++ Files

Arm C/C++/Fortran Compiler

(.c/.cpp)

Fortran Files

v

(1.£90)

68 © 2019 Arm Limited

v

Clang based)
C/C++
Frontend
W,
PGI Flang based)
Fortran
Frontend

LLVM IR

/ LLVM based\

Optimizer

IR Optimizations

Auto-vectorization

Enhanced optimization for
Armv8-A and SVE

J

Language specific frontend

2\

LLVM based)

LLVM IR

4

_ J

Language agnostic optimization

Armv8-A ~ Armv8-A
code-gen binary
J

LLVM based)
SVE
y . SVE
code-gen binary

J

Architecture specific backend

arm

Arm Compiler for HPC: Back-end
LLVM7

69

Arm pulls all relevant cost models and optimizations into the downstream codebase.
« Marvell have committed to upstreaming the cost models for future cores to LLVM.

Auto-vectorization via LLVM vectorizers:

- Use cost models to drive decisions about what code blocks can and/or should be vectorized.
« As of October 2018, two different vectorizers from LLVM: Loop Vectorizer and SLP Vectorizer.

Loop Vectorizer support for NEON (ThunderX2) and SVE:

e Loops with unknown trip count
* Runtime checks of pointers

* Reductions

* Inductions

* “If” conversion

© 2019 Arm Limited

Pointer induction variables
Reverse iterators

Scatter / gather

Vectorization of mixed types
Global structures alias analysis

arm

https://llvm.org/docs/Vectorizers.html
https://llvm.org/docs/Vectorizers.html

Arm’s Optimized OpenMP Runtime

Arm actively optimizes OpenMP runtime libraries for high thread counts

e Large System Extension (LSE) atomic update instructions

e Atomics dramatically reduce runtime overhead, especially at high thread counts.
- Used extensively in the OpenMP runtime shipped with the Arm HPC Compiler.
- Also available in GNU’s runtime.

e Synchronization constructs optimized for high thread counts.

- Designed with hundreds of threads in mind. lesh— shre 40
- Uses hardware features whenever available.

Zones per Second

NUMBber of threads

L e armclang 18.0 em—ccc 7.1
70 © 2019 Arm Limited a r m

Compile and link your application on Arm

Application porting is a boring, immediate task

- Modify the Makefile/installation scripts to ensure compilation for aarch64 happens
- Compile the code with the
- Link the code with the

- Examples:
$> armclang -c -I/path/armpl/include example.c -o example.o
$> armclang example.o -L/path/armpl/lib -larmpl 1lp64 -o example.exe -1lflang -1lflangrti -1m

Arm Compiler for HPC GNU Compiler
armclang gcc
armclang++ g++
armflang gfortran

71 © 2019 Arm Limited a r m

ArmPERFORMANCE LIBRARIES

Optimized BLAS, LAPACK and FFT

l"’
Commercially supported
by Arm

£ A

Best in class performance

v
) -
) -
) -

Validated with
NAG test suite

72 © 2019 Arm Limited

Commercial 64-bit Armv8-A math libraries

- Commonly used low-level math routines - BLAS, LAPACK and FFT
 Provides FFTW compatible interface for FFT routines
- Batched BLAS support

Best-in-class serial and parallel performance

- Generic Armv8-A optimizations by Arm

- Tuning for specific platforms like Cavium ThunderX2 in collaboration with

silicon vendors

Validated and supported by Arm

- Available for a wide range of server-class Arm-based platforms
- Validated with NAG’s test suite, a de-facto standard

arm

Validated with NAG’s test suite

NAG, the Numerical Algorithms Group are a company from ®
Oxford, UK, specialising in developing mathematical routines

They have been around for almost 50 years and have been

involved with almost all vendor maths libraries

They provided us with their validation test suite
- This enables us to test every build of the library to ensure that all changes we make still provide
numerical accuracy to the end-user

NAG are also under contract with us to provide support if we discover any issues with
code they have supplied

They also provide us updated code-drops when new versions of the base libraries are
released

73 © 2019 Arm Limited a r m

Commonly used low-level math routines

The libraries we include are known as BLAS, LAPACK and FFT
Most routines come in a four varieties (where appropriate)

— Single precision real : Routines prefixed by ‘S’
— Double precision real : Routines prefixed by ‘D’
— Single precision complex : Routines prefixed by ‘C’
— Double precision complex : Routines prefixed by ‘Z’

- The rest of the name (normally) describes something about what the routine does
— E.g. the matrix-matrix multiplication routine DGEMM is a
= D — Double precision
= GE — Matricies given in GEneral format
= MM — Matrix-Matrix multiplication is performed

74 © 2019 Arm Limited

arm

BLAS

BLAS, the Basic Linear Algebra Subroutines, is a standard API
- Itis provided on all systems, used by a wealth of scientific codes for vector and matrix maths

- It was designed for Fortran, but is callable from all languages

These routines are come in three levels
« BLAS level 1 — vector-vector operations, e.g. DCOPY, DAXPY, DDOT
« BLAS level 2 — matrix-vector operations, e.g. DGEMV, DTRMV, DGER
« BLAS level 3 — matrix-matrix operations, e.g. DGEMM, DTRMM, DTRSM

42 BLAS routines in total
Providing incredibly high performing versions of these routines is the team’s main work

75 © 2019 Arm Limited a r m

LAPACK

LAPACK, the Linear Algebra Package, is a another standard API

- Itis provided on all systems, used by a wealth of scientific codes for solving equation systems
- It was designed for Fortran, but is callable from all languages
« We currently support LAPACK 3.7.0

The routines in LAPACK are normally build on BLAS routines so work we do on BLAS
routines increases performance of particular LAPACK routines, too

There are now around 1700 LAPACK routines

- Most we do not touch, just using the reference version from Netlib
- Certain ones are very widely used, and these are where we focus our attention
« The key names to look out for are:

— Cholesky factorization : ?POTRF
— LU factorization : ?GETRF
— QR factorization : ?GETQR

76 © 2019 Arm Limited

arm

Fast Fourier Transforms

FFTs are very commonly used in a wide variety of applications. They allow some hard
problems to be transformed into a way that can be solved much more easily.

We ship 44 separate FFT routines, in 1-d, 2-d, 3-d and n-d

FFTs have no standard interface, unlike BLAS and LAPACK

- Instead we have an interface that matches that used by AMD’s ACML library
- We also provide a compatibility layer to allow users to call using the FFTW3 interface
- Support for Basic, Advanced, Guru and MPI interfaces

Our interface is therefore documented on the website (only in a PDF still) and that PDF is
also included in the installation

77 © 2019 Arm Limited q r m

DGEMM — ArmPL 19.0 vs BLIS vs OpenBLAS : Parallel

DGEMM - Comparing libraries on 56 threads on Cavium
1000000 ThunderX2

900000 >
800000
700000
600000
500000
400000
300000
200000

100000
0)i OpenBLAS

—-—ArmPL 19.0

Performance, MFLOPS

——BLIS

0 2000 4000 6000 8000
Matrix size, M=N=K

78 © 2019 Arm Limited a r m

ArmPL 19.0 FFT 3D complex-to-complex DP vs FFTW 3.3.7

79

© 2019 Arm Limited

3

2.5

1.5

0.5

Arm Performance Libraries speed-up over FFTW

.
o o o®
¢ °) 3
*
Aren Perf Libs better than FFTW . ! * * ¢
o (speed-up>1) ¢ 'S .
o¥
AR .
» o ¢ o ° . . S
e S o & o ® L d
¢ . Cad * *s o . . Ao
L 4 * L 2 L 4
L 4 V'S *® 0. N P
; PSR 3K . « ¢ .
* o o * ® & o .0 0. * o0
'S % °
. . . . o0 . * . PR
ME X 24 $ o ° *e * o 0 ° *
AR *e ¢ e e
YY1 . e 124 * .
Py o0 * L 2 L 2 L * TR 4 PS
o0 © ° L 4 L 4
R * * o o % X3 . IS
tee o o °, .«
' ® ®
* Performance parity
¢ (speed-up =1)
°
4
.
* .
FFTW better than Arm Perf Libs
(speed-up < 1)
1 101 201 301 401 501

Length of side for FFTW transform, size NxNxN

arm

Micro-architectural tuning

In order to achieve the best performance possible on all partner systems we need to do
different micro-architectural tuning

All BLAS kernels are handwritten in assembly code in order to maximise overall
performance

Different micro-architectures sometimes need fundamental differences in the instruction
ordering — or even the instructions used

At run-time this work should all be transparent to the user

However multiple packages are typically available for users to choose from, and they need
to load the appropriate module to set up their paths

Currently available are versions for:

= A72 = Cavium ThunderX2 = Generic AArch64

80 © 2019 Arm Limited q r m

Math Routine Performance
Distribution of https://github.com/ARM-software/optimized-routines

Normalised runtime Arm PL provides libamath

12 * With Arm PL module loaded, include

—-lamath in the link line.
1

« Algorithmically better performance than

‘ standard library calls
« No loss of accuracy

: « single and double precision implementations of:

exp(),pow(),and log()

' « single precision implementations of:

‘ sin(),cos(), sincos(), tan()
...more to come.

0

Cloverleaf OpenMX Branson

0

(o]

0

(o)}

0

~

0

N

mGCC mArm mArm +libamath

81 © 2019 Arm Limited a r m

Open source libraries for improved performance

Arm Optimized Routines
https://github.com/ARM-software/optimized-routines

These routines provide high performing
versions of many math.h functions

Algorithmically better performance than
standard library calls
No loss of accuracy

SLEEF library

https://github.com/shibatch/sleef/

Vectorized math.h functions
Provided as an option for use in

82 © 2019 Arm Limited

Perf-libs-tools
https://github.com/ARM-software/perf-libs-tools

Understanding an application’s needs for
BLAS, LAPACK and FFT calls
Used in conjunction with

can generate logging info to help profile
applications for specific case breakdowns

. A-shape - count B-shape - count N
4
o3
2
1
0

0o 1 2 83 4 5 0 1 2 8 4 5 NT

K (10%%) N (10%x))
A-shape - time B-shape - time Examp le

visualization:
N DGEMM
cases called
NN

5
4
3
2
1
0

0 1 2 3 4 5 0 1 2 3 4 5
K (10%)) N (10%x))

" Thank You
‘Danke
Merci
it
HYMES

Gracias
. . Kiitos
AL C}
s
AT

© 2019 Arm Limited

AWS Graviton Cluster: 108.128.237.67

Available for the next 24 hours

* Pick a student number 1 ... 20

* Replace XX with your student number

« ssh student@XX@108.128.237.67
- Password: Tr@ining@XX

* Grab a compute node (8 cores per node):
-srun —-n 8 ——pty $SHELL

* Remember to zero-pad your student number to three places, e.g. “3” becomes “003”

* We strongly recommend you download and install the Arm Forge Remote Client.

84 © 2019 Arm Limited a r m

https://developer.arm.com/tools-and-software/server-and-hpc/arm-architecture-tools/downloads/download-arm-forge

Tutorial Problem

* Matrix-matrix multiplication in C/C++:
Focus not on understanding the problem, but how to use the Arm toolchain
Naive to optimized performance

* Program flow
Initialize random data
Perform multiply

* Use of compiler for single core and multi-core application
* Understanding of application performance

* Finish with your codes or other examples
Mini-apps etc.

85 © 2019 Arm Limited q r m

Matrix-Matrix Multiply: Version 1

* Naive implementation works on single core
* No consideration of underlying hardware

;3 L<n; ++1){
5 J < L ++3){
(k= 75 k < m; ++k){
matC[i][j] += matA[1][k] * matB[k][j];

* How bad is performance? Easier to evaluate when compared to other code

86 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 2

* Add blocking to be able to take advantage of cache

+= blockSize){
; jj+= blockSize){
s =)
ji; j < min(l, jj + blockSize); j+=){
(k =kk; k < min(m, kk + blockSize); ++k){
matC[i1][j] += matA[i1][k] * matB[k][j];
matC[i][j+] += matA[1][k] * matB[k][

j
matC[i+]J[j] += matA[i+][k] * matB[k]
matC[i+ J[j+] += matA[i+]J[k] * matB[

* Have only added one level of blocking, which can take advantage of a single level of
cache only

* Also little bit of loop unrolling to allow re-use of registers

87 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 2

* Add blocking to be able to take advantage of cache

+= blockSize){
; jj+= blockSize){
s =)
ji; j < min(l, jj + blockSize); j+=){
(k =kk; k < min(m, kk + blockSize); ++k){
matC[i1][j] += matA[i1][k] * matB[k][j];
matC[i][j+] += matA[1][k] * matB[k][

j
matC[i+]J[j] += matA[i+][k] * matB[k]
matC[i+ J[j+] += matA[i+]J[k] * matB[

* Performance improvement of greater than 2x at 1024x1024 with 128 block size

 Still tens of seconds to perform a small multiply — bring out the big guns

88 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 3

e Use Arm Performance Libraries
Addition of —larmpl flag to build command
Standard BLAS interface

cblas_dgemm(CblasRowMajor, CblasNoTrans, CblasNoTrans, n, m, 1, , dataA,

m, dataB, 1 dataC, m);

* Approximately 17x speed-up over blocked multiply and 40x over naive implementation

89 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 4

* Have multiple physical cores available on the system — make use of them
* OpenMP directives added to loops
* Link to parallel version of the Arm Performance Libraries (-larmpl_mp)

(kk= ©; kk < m; kk+= blocksize){
(jj= 3 33 < 1; jj+= blockSize){
(i= 73 1 < n; i+=){
(3= 33; 3 < min(1l, jj + blockSize); j+=){
(k =kk; k < min(m, kk + blockSize); ++k){
matC[1][j] += matA[i1][k] * matB[k][]j];
matC[i][j+] += matA[i1][k] * matB[k][

j+
matC[i+][j] += matA[i+][k] * matB[k][]
matC[i+][j+] += matA[i1+]J[k] * matB[k]

1;
1;
[J+1];

90 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 4

91

Have multiple physical cores available on the system — make use of them
Small matrix size means not all threads can be used with simple OpenMP directive

Arm Performance library utilizes all threads — approximately 100x faster than blocking
approach

(kk= ; kk < m; kk+= blockSize){
(3j= 5 33 < 1; jj+= blocksize){
(i= ;3 1 < n; 4=){

(3= ji; J < min(l, jj + blocksize); j+=){
(k =kk; k < min(m, kk + blockSize); ++k){
matC[i][j] += matA[i1][k] * matB[k][j];
matC[i][j+] += matA[i1][k] * matB[k][j+
matC[i+][j] += matA[i+]1[k] * matB[k][
matC[i+][j+] += matA[i+][k] * matB[k

1;
1;
[J+1];

j
]

© 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 4 (Interlude)

* Time to populate matrices with random data much higher when using OpenMP
* Use Arm Forge (performance analysis toolset) to investigate

#pragma omp parallel for private(i, j)
113 @ for (i= 0; i < n; ++1i){
114 8 for (j= 0; 3 € m; ++3){
11.’_: matA[i]J[j]= ((double)rand()) / RAND MAX;
ZZEE] for (= 0; 3 < 1; ++3){
19 matC[i][j]l= 0.0;
#pragma omp parallel for private(i, jJj)
124 for (i= 0; i < m; ++i){
125 @ for (4= 0; J < 1; ++3){
35.6% . 126 matB[i][j]= ((double)rand()) / RAND_MAX;

* Lots of time spent waiting on the kernel in glibc rand function
Kernel lock being held means that parallel performance can’t be obtained

92 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 5 (Interlude)

* Update random function to be thread safe implementation (e.g. C++ stdlib functions)

1178 for (i= 0; i < n; ++i){
118 @ for (j= 0; j < m; ++9){
O3 IL 1}9 | matA[i][j]= ((double)uniform dist(el)) / maxRandNum;

122 @ for (3= 0; j < 1; ++3){
123 matC[i][j]l= 0.0;
:E"_ #pragma omp parallel for private(i, j)
128 = for (i= 0; 1 < m; ++i){
129 B for (3= 0; j < 1; ++3){

6.4% . 130 matB[i][j]= ((double)uniform_dist(el)) / maxRandNum;

* Can make use of all cores in parallel

93 © 2019 Arm Limited a r m

Matrix-Matrix Multiply: Version 6

* Allow compiler to make better decisions on loop parallelism

(kk= ; kk < m; kk+= blockSize){
(3j= 5 33 < 1; jj+= blocksize){
(i= ; 1 < n; 1+=){

(3= 33 3 < min(1l, jj + blocksize); j+=){
(k =kk; k < min(m, kk + blockSize); ++k){
matC[i1][j] += matA[1][k] * matB[k][j];
matC[i1][j+] += matA[1][k] * matB[k][j+
matC[i+ J[j] += matA[i+][k] * matB[k][
matC[i+ J[j+] += matA[i+]J[k] * matB[k

1;
1;
[J+1];

j
]

* Allows better use of threads — 8x speed-up over not using collapse directive

 Still greater than 10x slower than Arm Performance Libraries

94 © 2019 Arm Limited a r m

Exercise 1: Fix a simple crash in MPI

Objectives:
« Discover Arm DDT’s interface
- Debug a simple crash in a MPI application interactively
« Use the tool in a cluster environment

Key commands:
- Scd01_*/
« Compile the application
- S make
« Run it!
- S ./Run.sh
« Accept the incoming connection!
- Can you find out and fix the bug?

96 © 2019 Arm Limited

arm

Exercise 2: Debug a fatal memory crash

Objectives:
« Use the memory debugging feature
- Diagnose and fix a memory problem

Key commands:
«Scd02_*/
- Compile the application with debugging flags
- S make
« Run it!
- S ./Run.sh
- Enable memory debugging in the “Run window”
« Change the amount of checks, enable guard pages
- Can you see the memory issue can you fix it?

97 © 2019 Arm Limited a r m

Exercise 3: Detect memory leaks

Objectives:
« Use the memory debugging feature
- Diagnose and fix a memory leak problem

Key commands:
«Scd03_*/
- Compile the application for debugging
- S make
« Run it!
- S ./Run.sh
« Open the resulting *.html file
 Can you see the memory leak?
- Restart the debugger in interactive mode. Can you see any hint from the debugger?

98 © 2019 Arm Limited a r m

Exercise 4: Offline debugging

Objectives:
- Use Arm DDT’s offline mode
« Use the memory debugging feature
- Diagnose and fix a memory leak problem

Key commands:
«Scd04_*/
- Compile the application for debugging
- S make
« Run it!
- S ./Run.sh
« Open the resulting *.html file
 Can you see the memory leak?
- Restart the debugger in interactive mode. Can you see any hint from the debugger?

99 © 2019 Arm Limited a r m

Exercise 5: Debug a deadlock

Objectives:
- Witness a deadlock and attach to the running processes
« Use Arm DDT Stack feature
« Use Arm DDT evaluation window

Key commands:
« Scd 05_deadlock/
« Compile with:
- S make
Run the job with 10 processes: it works.
Run it with 8 processes: it hangs!
Leave the application run in the queue and attach to it with the debugger
Observe where it hangs. Can you fix the problem?

100 © 2019 Arm Limited a r m

Exercise 6: Computation Error

Objectives:
- Fix a computation error using the multi-dimensional array viewer (MDA)
« Use the debugger on a MPMD application
« Use breakpoints

Key commands:
- Scd06_*/

Compile the application for debugging

- S make

Run it!

- S ./Run.sh

Look at the output log files, you should see NaN results which indicate a computation error
Use the MDA to visualise the result data and find the source of the problem.

101 © 2019 Arm Limited a r m

Arm Forge and MVAPICH?2

* To use DDT’s memory debugging features, set the environment variable
MV2_ ON_DEMAND_THRESHOLD to the maximum job size you expect. This setting
should not be a system wide default; it should be set as needed.

e Tousempirun_rsh with DDT, from File > Options go to the System page, check
Override default mpirun path and enter mp1run_rsh. You should also add —
hostfile <hosts>, where <hosts> isthe name of your hosts file, within the
mpirun_rsh arguments field in the Run window.

* To enable message Queue Support MVAPICH 2 must be compiled with the flags
——enable-debug ——enable-sharedlib. These are not set by default.

* MVAPICH2 MPI programs cannot be started using Express Launch syntax.
- Do use: “ddt ./a.out” and configure MPI launch parameters in the GUI.

’ . ”

102 © 2019 Arm Limited a r m

